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story, Directorate of Research, Wright Air Development Center, with
Major A. A, Marston as Task Scientist.
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ABSTRACT

The approximation of a uniaxial tensile stress flow
curve from hardness measurements is possible by utilizing
certain empirical conversion constants, Agreement of the
tensile and hardness testing methods is possible upon metals
such as aluminum, copper, and steel. However, magnesium
is not amenable to such a conversion of testing procedures.
The presence of profuse twinning at low stress levels is
believed to be the reason for unfavorable results in magnesium
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THE RELATIONSHIP OF HARDNESS MEASUREMENTS TO THE
TENSILE AND COMPRESSION FLOW CURVES

R. E. Lenhart

INTRODUCTION

Hardness, in its most familiar connotation, is the resistance
of a material to local inaentation. When the size and depth of the
indentation is measured, and the load that produced the indentation is
specified, the hardness can be defined in a quantitative manner. The
Brinell, Vickers, and Rockwell(1, 2, 3 hardness testing methods are
the three most common procedures for obtaining quantitative hardness
values upon metals., These testing machines impress either a hardened
ball, a diamond pyramid, or a diamond cone into the metal, The results
are essentially a measure of the resistance to plastic deformation of the
metal by external forces,

The familiar uniaxial stress iensile test is also a measure of
the resistance to plastic deformation of a metal by external forces.
The relationship of the hardness to the tensile method of producing plastic
deformation has in general been ill-defined. The complex nature of the
stress distribution during plastic flow in the hardness test precludes a
simply derived relationship to the tensile test. However, Tapor(4 5 6)
has developed an empirical correlation that relates the two and enables
a conversion of one measurement to the other. The usefulness of this
correlation depends upon its exactitudes and its limitations., This report
presents data intended to corroborate the work of Tabor and to specify
a major limitation of his empirical correlation.

BACKGROUND

The mean pressure between the surface of the indenter and the
indented metal is equal to the ratio of the load to the projected area of
the indentation. Meyer, in 1908, was the first to propose this relation-
ship, and it is now referred to as the Meyer hardness. Thus,

4W

Hm- =
Td?

’ (1)
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where, Hm is the Meyer hardness number, W is the applied load, and d
is the diameter of the indention. It is interesting to note that the Meyer
hardness has the dimensions of stress.

, \; The relationship between the load W and the size of the indenta-
{s tion d was also expressed by Meyer as,

AL

3‘.:{‘:

33 W = kd". (2)
S

iy

" Here, k and n are material constants. The value of n is generally

e greater than 2 and usually lies between 2 and 2.5. It is found that for
S fully annealed metals, n has a value near 2.5 while for fully work hard-
%} ened materials it is close to 2.

The true stress-strain curve for m g}fds may be approximated
over an appreciable range of deformation b

o = ge ’ (3)

- where, g and m are constants and ¢ and e are the stress and strain
‘Ei;g respectively. " The value of m usually lies between zero and 0,5 with
1 annealed cubic materials being close to the upper value. This equation

: l has®been referred to as the "mechanical equation of state" and is ex-

S pounded in detail by Hollomon and Lubahn. 8) Eq. (2) is substituted
{ into Eq. (1) then

5 Ak ez
R Hm = = kd ", (4)
Nl rd? L
s o
o ' 4k . e
53 where k; = ——. Examination of Eqgs. (3) and (4) reveals that both are RN
T suitable for defining the plastic properties of metals., Both equations Z:I:‘;e‘iiﬁ
ﬁ‘-::ﬁ are of the exponential form with the exponents being nearly equal. How- gj.:}‘i
22 ever, the relationship between ¢ and Hm and between e and d being un- N
T defined precludes free substitution of one equation into the other. For 2
R example, Eq. (3) has the limitation of constant strain rate which is not

Y maintained on a hardness test. As previously mentioned, Tabor has

5 approached this problem by obtaining empirical constants that relate
% these variables. Readers are referred to his works for the details of
‘ his experiments that have produced the following equations.
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Hm = 2.8 ¢ (9) 3’"*"251
sl
el
Ve

e=02%L | (6) SRy

D e

where D is the diameter of the indenting ball. AL

LR :"'“;i
\3: The conceot of tensile flow curves being derived from hardness R
F‘-*’:} measurements is of interest from at least two viewpoints, First, the ”?.jﬂ
&2 preparatic: a.d testing of a hardness specimen requires much less ex- NS
IR T

pense and tic.e than the tensile specimen. This point is of particular
benefit to large alloy exploration programs. Secondly, flow curves
coulc be obtained upon castings and other structures without the destruc-
tion of the con:ponent. This feature is attractive from a production
expense viewpoint. The work presented in this report was initiated for
the purpose of using the T'abor hardness relationships in a magnesium
alloy exploration program. Thus it was desired to obtain experimental
verification of the hardrisss tensile relationship for these alloys.

EXPERIMTNTAL PROCEDURES AND RESULTS

The experiments reported Lerein were performed u}()ogx the
magnesium-aluminum alloys described in a previous report. 9 The
preparation of the alloys together with the tensile and compression
tu2ting are identical with that previously reported.

Specimens for the Meyer hardness procedure were prepared
with dimensions 3 x 1/2 x 3/8 inches. The testing was performed upon
a hand operated Brinell hardness tester with a load application duration
of 15 seconds. Carapella and shaw(10) discuss the importance of load
application time, specimen size, load, and load application rate. FEach
of the factors influences the hardness value to a limited extent. How-
ever, each was held nearly constant for the obtaining of these data and
was not censidered to be a factor that would invalidate the results.

"t

——y

- apmgn
[\
)

Figures 1 through 3 are typical of the tensile, compression,
and hardness flow curves upon the various magnesium alloys. The
hardness flow curves were obtained from Egs. (5) and (6). Examination
of Figs. 1 through 3 clearly shows tuiat there is liitle similitude among
the three types of flow curves. Figures 4 and 5 are data for Dural (24-ST6)
aluminum and OFHC copper. These data were taken to demonstrate
that the lack of agreement among testing procedures upon magnesium
was a function of the material and not of the mechanical test. Althcugh
the Dural and OFHC curves in Figs. 4 and 5 are not exact duplicates,
their juxtaposition is considerably be‘ter than shown in Figs. 1 to 3.
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Figure 6 is a graph that
Tabor has published re-
lating hardness to tensile
sole flow curves upon three
/ materials. The good
x - agreement between testing
28— methods is obvious in
" these graphs.
2 2l
% DISCUSSION
oy @ 20— The results presented
34 2 in Figs. 4, 5, and 6 demon-
i‘i'j’ w 16~ strate that the constants
B g for conversion of hardness
ina ol < - COMPRESSION to tensile data formulated
ey 0 - TENSILE by Tabor are workable
ait 4 - HARODNESS for aluminum, copper, and
RERY 8 steel. The experimental
f',?{:i error was in general less
M 4 OFHC - COPPER than 5 per cent between the
ANNEALED - 500°C, 2 HOURS two test methOdS. The Fr
:{* ] | | , | same magnitude of difference E‘{\\
Y o 02 .04 06 08 o 2 .4 appears between the results ;.3\_.; L,
) TRUE STRAIN of the tensile and compressive Torkk
o tests. LR

Fig. 5 True stress-true strain flow

curves obtained upon OFHC copper. The most obvious

reasons that may be of-
fered to explain the lack
of testing agreement are experimental error, the Bauschinger effect, and

= crystal anisotropy. The exact contributions of each to the total difference
;“ woul riquire a more detailed experimental program. Carapella and
ey Shaw{10) point out that experimental error can be introduced in the hardness
;i,.\ test if certain specimen dimension ratios are not controlled. These are:
."‘.':Eil N
(1) Specimen thickness should be at least 7 times the depth of
i the ball impression,
"{-"é (2) Distance between the impression and the edge of specimen 3
7 should be at least 2 times the diameter, and Sk
wf’f‘ )
(3) Distance between impressions should be at least 4 times vy
o the diameter, 1%
2 3
o 3
e
iz WADC-TR~55-114 6 ERR
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EQUIVALENT DEFORMATION, PER CENT

0 4 8 I2 16 20 24
8o l T | | I
MILD STEEL
160—
140— TRUE STRESS = 2.8 Hm

120~ —— STRESS-STRAIN CURVE

O HARDNESS VALUES

100—

MEYER HARDNESS - Hm, Kg/sg, mm.

80—
ANNEALED GOPPER
60—
40—
PARTIALLY ANNEALED ALUMINUM
20—
(TAKEN FROM TABORS )
0 I [ . 1 | I |
0 0.2 0.4 0.6 0.8 1.0 1.2 14
d/D
Fig. 6 Flow curves obtained by Tabor(6) upon steel, copper, and
aluminum,
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The Bauschinger effect can introduce error by lowering the compressive
yield strengt» of a material that has undergone previous tensile plastic
deformation (i.e., cold rolling). The third possible source of error is
the crystalline anisotropy and its effect upon deformatizn. The magnitude

Ny Oy Sanla

i~
A
A

-
&
e g’

of this error is strikingly demonstrated in Figs. 1 to 3 of this report. ISR
The explanation of this anisotropy error is contained in the plastic defor- B0
mational characteristics of magnesium. Magnesium will deform by th S
main mechanisms, namely, slip and twinning. Tt is known [see Beckl )] N
that twinning will not occur in single crystals when the applied stress axis :?;::I;ﬁ
is within certain regions of the crystalline orientation. Likewise, it is S
known that the magnitude of the critical resolved shear stress to produce b

slip varies by orders of magnituéie sas a function of angle between stress
axis and crystalline orientation. 11} These factors combine to predict
many different stress-strain relationships for single crystals of magnesium.
Polycrystalline magnesium that possesses a high degree of preferred
orientation should exhibit many of the same general stress-strain deviations.

Reviewing the data of this report, with respect to the three error
factors just mentioned, it is possible to justify qualitatively certain dis-
crepancies in the data. By utilizing the information presented in the
previous report 9) upon the deformation of the magnesium alloys, the
position of the magnesium hardness flow curve can be rationalized. The
magnesium alloys had a preferred orientation with the basal plane (0001)
parallel to the surface of the sheet. This orientation and the method of
preparing specimens placed the compression and tensile test axis parallel
to the basal.plane. The hardness test axis was perpendicular to the basal
plane. It was demonstrated(9) that the low yield strength and the shape of
compression flow curve is associated with profuse twinning and that twin-
ning is absent in the tensile test when a higher yield strength results. If
the hardness test consisted of only compressive stress directly under the
indenter so that no twinning occurred, or : would expect the hardness flow
curve to parallel the tensile flow curve. This criterion is based on the
relationship of the hardness compression stress axis to the axis of the
basal plane. However, the nature of the stress distribution under the
hardness indenter is quite complex and results in compressive stresses
throughout a hemispherical solid angle under the indenter. This stress
distribution places a component of the compressive stress paraliel to the
basal plane of the magnesium during the hardness test. This stress state
is somewhat analogous to bending, which results in profuse twinning in
magnesium, Thus, there exists the necessary conditions to produce twin-
ning. As a result, the hardness flow curve would be expected tc .ie inter-
mediate to the compressive and tensile flow curves and nearer to the
compression curve, Metallographic examination of the magnesium under the
hardness indentation reveals large amounts of twinning that seem to support the

WADC-TR-55-114 8
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existence of lateral compressive forces under the indenter. Therefore,
the ability of hardness measurements to predict tensile flow character-
istics in magnesium was not possible because of the strong influence of
twinning upon the deformational stress-~strain relationships.

(38 'l

XL

5 »
ne 17
!

Such crystalline anisotropy is not found in copper and aluminum
as is evident in magnesium. Both copper and alyminum are face-centered-
cubic in structure and are not amenable to the formation of deformation
twins. In addition they possess several possible slip planes rather than
just one, as exnibited by magnesium at room temperature. As a result,
one should expect similitude among the deformation flow curves. The
flow curves on Dural, Fig. 4, are considered quite good and within nor-
mal scatter of data. The data on OFHC copper, Fig. 5, possess more
scatter but not enough to invalidate the tests. It will be noted that Tabor's
data on copper, Fig. 6, possess scatter of similar magnitude. Just why
copper should give such results is not clear. However, tne ability to
correlate hardness and tensile data is still quite good.

“y ‘t::_
L
"'C

ot

The importance of the Bauschinger effect and experimental
error in these data is unresolved. Since the alloys were annealed
between the rolling and the testing, the Bauschinger effect should be
small. The data tend to confirm this statement by the sameness of
compression and tensile yield points in the copper and aluminum. Ex-
perimental error is possible in all of the high strain hardness tests, since
a ratio of 7:1 between sample height and hardness depth was not main-
tained. However, this condition should only apply to the last one or two
data points of each hardness flow curve. The data do not indicate that
there is significant error in that region. Therefore, it can be concluded
that the data are reliable,

CONCLUSIONS

In general, Tabor's correlation between the hardness test and
tensile test is reasonable and workable. However, care must be exer-
cised to reduce experimental error and the Bauschinger effect. From b
the experimental evidence presented here upon magnesium, Tabor's D
correlation should not be applied to metals that are subject to large i
deformation mechanism anisotropies, such as twinning.
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